CE439 – CAD Algorithms for Physical Design - Introduction

Christos P Sotiriou

1

CE439 - CAD Algorithms II 29/2/2016

Contents

- ▶ TCL Library and CAPI
 - https://www.tcl.tk/
 - https://www.tcl.tk/man/tcl8.5/TclLib/contents.htm
- ▶ GNU Readline API
 - http://www.gnu.org/software/readline/

> 2

Recommended Texts

Recommended books

- S. K. Lim, *Practical Problems in VLSI Physical Design Automation*, Springer, 2008
- C. J. Alpert, D. P. Mehta, S. S. Sapatnekar, Handbook of Algorithms for Physical Design Automation, Auerbach Publications, 2008
- S. M. Sait and H. Youssef, VLSI Physical Design Automation: Theory and Practice, World Scientific, 1999.

Algorithm book

- ► T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein Introduction to Algorithms, MIT Press, 2009 (3rd edition)
- ▶ Selected papers from the literature.

3

CE439 - CAD Algorithms II 29/2/2016

Physical Design Problems to Algorithms

CAD Algorithms	Physical Design Stages
Graph algorithms	Partition
Graph algorithms Combinatorial Algorithms Mathematical programming (QP, LP)	Placement
Shortest path Mathematical programming (LP) Greedy algorithms	Static Timing Analysis Routing
Graph Algorithms Combinatorial Algorithms	Legalization

Identify Problem Formulation into an Algorithm

- 4

Physical Design Steps

- ▶ Design Steps in More Detail
 - ▶ Partitioning/Clustering
 - Floorplanning
 - I/O Pin Assignment
 - ▶ Placement
 - Clock Tree Synthesis
 - ▶ Global Routing
 - Detail Routing

9

Complexities of Physical Design

- More than 100 million transistors
- Performance driven designs
- Power-constrained designs
- ► Time-to-Market
- ▶ PPA (Power-Performance-Area) is key metric

12

Why is Physical Design Important?

- Many existing solutions are still very suboptimal
 - ▶ E.g., placement
- Interconnect dominates
 - No physical layout, no accurate interconnect
- More new physical and manufacturing effects pop up
 - Crosstalk noise, ...
 - ▶ OPC (manufacturability), etc.
- More vertical integration needed
- Physical design is the KEY linking step between higher level planning/optimization and lower level modeling

13

The Placement Problem

- Placement, to large extend, determines the overall interconnect
- If it sucks, no matter how well you interconnect optimization engine works, the design will suck
- ▶ Placement is a very old problem, but got renewed interest
 - Mixed-size (large macro blocks and small standard cells)
 - Dptimality study shows that placement still a bottleneck
 - Not even to mention performance driven, and coupled with buffering, interconnect optimizations, and so on (all you name)

15

CE439 - CAD Algorithms II 29/2/2016

Comparison with Optimal Solution

- ▶ Capo: Based on recursive min-cut (UCLA-UMich)
- ▶ Dragon: Recursive min-cut + SA refinement at each level (NWU-UCLA)
- ▶ mPL: multi-level placer (UCLA)
- There is significant room for improvement in placement algorithms: existing algorithms are 50-150% away from optimal!

16

Basic Design Rules

- ▶ I. Size Rules
- ▶ 2. Separation Rules
- ▶ 3. Overlap Rules

 $\begin{array}{lll} \text{Diffusion Region Width} & 2\lambda \\ \text{Polysilicon Region Width} & 2\lambda \\ \text{Diffusion-Diffusion Spacing} & 3\lambda \\ \text{Poly-Poly Spacing} & 2\lambda \\ \text{Polysilicon Gate Extension} & 2\lambda \\ \text{Contact Extension} & \lambda \\ \text{Metal Width} & 3\lambda \\ \end{array}$

19

Additional Fabrication Issues

- Scaling
- Parasitic Effects
- Yield Statistics and Fabrication Costs
- Delay Computation
- ▶ Noise and Crosstalk
- ▶ Power Dissipation

24

7-7	gii Styi	es	s Con	npariso	on		
				st	yle		
	İ	Ī	full-custom	standard cell	gate array		FPGA
	cell size		variable	fixed height *	fixed	fixed	
	cell type		variable	variable	fixed	programmable	
	cell placement		variable	in row	fixed	fixed	
	interconnections		variable	variable	variable	programmable	
_		Г		. 1			
				style			
		ful	ll-custom	standard cell	gate array		FPGA
L	Area	c	ompact	compact to moderate	moderate	•	large
F	Performance	hi	igh	high to moderate	moderate		low
1 :	abrication avers	ALL		ALL	routing lavers		none

History of Physical Design Tools

Year	Design Tools
1950 - 1965	Manual Design
1965 - 1975	Layout editors Automatic routers(for PCB) Efficient partitioning algorithm
1975 - 1985	Automatic placement tools
	Well Defined phases of design of circuits
	Significant theoretical development in all phases
1985 – 1995	Performance driven placement and routing tools Parallel algorithms for physical design Significant development in underlying graph theory Combinatorial optimization problems for layout
1995 – 2002	Interconnect layout optimization, Interconnect- centric design, physical-logical codesign
2002 - present	Physical synthesis with more vertical integration for design closure (timing, noise, power, P/G/clock, manufacturability)

31

CE439 - CAD Algorithms II 29/2/2016

Algorithms

- ▶ To put devices/interconnects together into VLSI chips
- ▶ Fundamental questions: How do you do it smartly?
- ▶ Definition of algorithm in a board sense: A step-by-step procedure for solving a problem. Examples:
 - Cooking a dish
 - Making a phone call
 - Sorting a hand of cards
- ▶ Definition for computational problem: A well-defined computational procedure that takes some value as input and produces some value as output

32

Some Algorithm Design Techniques

- Greedy
- Divide and Conquer
- Dynamic Programming
- Network Flow
- Mathematical Programming (e.g., linear programming, integer linear programming)

33

CE439 - CAD Algorithms II 29/2/2016

Algorithm Analysis

- ▶ There can be many different algorithms to solve the same problem.
- ▶ Need some way to compare 2 algorithms.
- Usually run time is the most important criterion used
 - > Space (memory) usage is of less concern now
- However, difficult to compare since algorithms may be implemented in different machines, use different languages, etc.
- Also, run time is input-dependent. Which input to use?
- ▶ Big-O notation is widely used for asymptotic analysis
 - N→inf

34

Big-O Notation

- Consider run time for the worst input
 - upper bound on run time.
- Express run time as a function input size n.
- Interested in the run time for large inputs.
- Therefore, interested in the growth rate.
- Ignore multiplicative constant.
- Ignore lower order terms.
- \rightarrow 3n²+6n+2.7 is O(n²).
- \rightarrow n^{1.1}+10000000000n is O(n^{1.1}).
- ightharpoonup n^{1.1} is also O(n²), but to be more precise, it is O(n^{1.1})

35

CE439 - CAD Algorithms II 29/2/2016

Growth Rates of Some Functions

$$O(\log n) < O(\log^2 n) < O(\sqrt{n}) < O(n)$$

$$< O(n \log n) < O(n \log^2 n) < O(n^{1.5}) < O(n^2)$$
Functions
$$O(n^3) < O(n^4)$$

$$O(n^6) = O(2^{e \log n}) \text{ for any constant } c$$

$$< O(n^{\log n}) = O(2^{\log^2 n})$$

$$< O(2^n) < O(3^n) < O(4^n)$$

$$< O(n!) < O(n^n)$$
Functions
$$C = C(n^{\log n}) = C(n^{\log n}) = C(n^{\log n})$$

$$< O(n^{\log n}) = O(n^{\log n}) = C(n^{\log n}) = C(n^{\log n})$$

> 36

NP-Complete Problems

- ▶ The class <u>NP-Complete</u> is the set of problems which we believe there is no polynomial time algorithms.
- ▶ Therefore, it is a class of hard problems.
- ▶ NP-Hard is another class of problems containing the class NP-Complete.
- If we know a problem is in NP-Complete or NP-Hard, there is no hope to solve it efficiently.

37

CE439 - CAD Algorithms II 29/2/2016

Algorithm Solution Types

- Polynomial time algorithms
- Exponential time algorithms
- Special case algorithms
- Approximate algorithms
- ▶ Heuristic algorithms

38