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CE439 – CAD Algorithms for 

Physical Design  - Introduction
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Contents

 TCL Library and C API

 https://www.tcl.tk/

 https://www.tcl.tk/man/tcl8.5/TclLib/contents.htm

 GNU Readline API

 http://www.gnu.org/software/readline/
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Recommended Texts

 Recommended books

 S. K. Lim, Practical Problems in VLSI Physical Design Automation, 

Springer, 2008 

 C. J. Alpert, D. P. Mehta, S. S. Sapatnekar, Handbook of Algorithms 

for Physical Design Automation, Auerbach Publications, 2008 

 S. M. Sait and H. Youssef, VLSI Physical Design Automation: Theory 

and Practice, World Scientific, 1999. 

 Algorithm book

 T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein Introduction to 

Algorithms, MIT Press, 2009 (3rd edition) 

 Selected papers from the literature.
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Physical Design Problems to Algorithms

 Identify Problem Formulation into an Algorithm

CAD Algorithms Physical Design Stages

Graph algorithms Partition

Graph algorithms

Combinatorial Algorithms

Mathematical programming 

(QP, LP)

Placement

Shortest path

Mathematical programming 

(LP)

Greedy algorithms

Static Timing Analysis

Routing

Graph Algorithms

Combinatorial Algorithms

Legalization
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Physical Design Structure

 Devices

 Transistors

 Logic gates and cells

 Function blocks

 Interconnects

 Local signals

 Global signals

 Clock signals

 Power/ground nets

Pad Metal1 Via Metal2

I/O

Data Path

ROM/

RAM

PLA

A/D Converter
Random 

logic

29/2/2016CE439 - CAD Algorithms II5

Physical Design Cycle

 Large number of devices

 Optimization requirements for high performance

 Time-to-market competition

 Power (and other) constraints 

System

Specification
Chip

Manual

Automation

 Large number of devices

 Optimization requirements for high performance

 Time-to-market competition

 Power (and other) constraints 
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Design Cycle – 1

System Specification

Functional Design

Logic Design

Circuit Design

X=(AB*CD)+(A+D)+(A(B+C))

Y=(A(B+C))+AC+D+A(BC+D))
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Design Cycle - 2

Physical Design

Fabrication

Packaging
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Physical Design Steps

 Design Steps in More Detail

 Partitioning/Clustering

 Floorplanning

 I/O Pin Assignnent

 Placement

 Clock Tree Synthesis

 Global Routing

 Detail Routing
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Physical Design Steps

Design Steps:
Partition & Clustering
Floorplan & Placement

clk

clk
clk

a

a

aPin Assignment
Global RoutingGlobal Routing
Detailed Routing

Methodology:
Divide-and-Conquer
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Physical Design Steps

29/2/2016CE439 - CAD Algorithms II11

Complexities of Physical Design

 More than 100 million transistors

 Performance driven designs

 Power-constrained designs

 Time-to-Market

 PPA (Power-Performance-Area) is key metric
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Why is Physical Design Important?

 Many existing solutions are still very suboptimal

 E.g., placement

 Interconnect dominates 

 No physical layout, no accurate interconnect

 More new physical and manufacturing effects pop up

 Crosstalk noise, …

 OPC (manufacturability), etc.

 More vertical integration needed

 Physical design is the KEY linking step between higher 

level planning/optimization and lower level modeling
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Technology Trends and Challenges

 Interconnect determines the overall performance

 In addition: noise,  power => Design closure

 Furthermore: manufacturability => Manufacturing closure

Source:

ITRS
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The Placement Problem

 Placement, to large extend, determines the overall 

interconnect

 If it sucks, no matter how well you interconnect 

optimization engine works, the design will suck

 Placement is a very old problem, but got renewed interest 

 Mixed-size (large macro blocks and small standard cells)

 Optimality study shows that placement still a bottleneck

 Not even to mention performance driven, and coupled with 

buffering, interconnect optimizations, and so on (all you name)
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Comparison with Optimal Solution

 Capo: Based on recursive min-cut (UCLA-UMich)

 Dragon: Recursive min-cut + SA refinement at each level (NWU-UCLA)

 mPL: multi-level placer (UCLA)

 There is significant room for improvement in placement algorithms: existing 
algorithms are 50-150% away from optimal! 
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Optical Proximity Correction (OPC)
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OPC-Aware Routing

More OPC friendly
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Basic Design Rules

 1.  Size Rules

 2.  Separation Rules

 3.  Overlap Rules

Diffusion Region Width 
Polysilicon Region Width 
Diffusion-Diffusion Spacing 
Poly-Poly Spacing 
Polysilicon Gate Extension 
Contact Extension 
Metal Width 

2 

2 

3

2 

2 

 

3 
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Size, Separation and Overlap Rules

Incorrectly and 

Correctly Formed Channels
Diffusion

Short

Poly

Incorrectly formed

Channel

Correctly formed

Metal

Diffusion Poly Overlap Rules for 

Contact Cuts
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Layout of Basic Devices

 CMOS Inverter
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CMOS NAND Gate
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CMOS NOR Gates
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Additional Fabrication Issues

 Scaling

 Parasitic Effects

 Yield Statistics and Fabrication Costs

 Delay Computation

 Noise and Crosstalk

 Power Dissipation

29/2/2016CE439 - CAD Algorithms II24



2/29/2016

13

Design Styles

Complexity of

VLSI circuits

Full custom

Performance Size Cost Market time

Standard Cell Gate Array FPGA

Different design styles

Cost, Flexibility, Performance
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Full Custom Design Style

Pad Metal Via Metal 2

I/O
Data Path

ROM/RAM

PLA

A/D Converter
Random logic
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Standard Cell Design Style

VDD
Metal 1

Cell
Metal 2

Feedthrough
GND

D C C B

A C C

D C D B

C C C B

Cell A

Cell C

Cell B

Cell D
Feedthrough cell
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Gate Array Design Style

 Structured ASICs (hot topics nowadays) are essentially gate array

A

B

C

A

B

C
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FPGA Design Style
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Design Styles Comparison

full-custom standard cell gate array FPGA

cell size variable fixed height * fixed fixed

cell type variable variable fixed programmable

cell placement variable in row fixed fixed

interconnections variable variable variable programmable

Area

Performance

Fabrication 

layers

style

full-custom standard cell gate array FPGA

compact

high

compact

to moderate
moderate large

high

to moderate
moderate low

ALL ALL routing 

layers
none

style
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History of Physical Design Tools

Year Design Tools 

1950 - 1965 
 
1965 - 1975 
 
 
 
1975 - 1985 
 
 
 
1985 – 1995 
 
 
 
 
1995 – 2002 
 
 
2002 - present 

Manual Design 
 

Layout editors 
Automatic routers( for PCB) 
Efficient partitioning algorithm 
 
Automatic placement tools 
Well Defined phases of design of circuits 
Significant theoretical development in all phases 
 
Performance driven placement and routing tools 
Parallel algorithms for physical design 
Significant development in underlying graph theory 
Combinatorial optimization problems for layout 
 
Interconnect layout optimization, Interconnect-
centric design, physical-logical codesign 
 
Physical synthesis with more vertical integration 
for design closure (timing, noise, power, P/G/clock, 
manufacturability) 
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Algorithms

 To put devices/interconnects together into VLSI chips

 Fundamental questions: How do you do it smartly?

 Definition of algorithm in a board sense: A step-by-step 

procedure for solving a problem. Examples:

 Cooking a dish

 Making a phone call

 Sorting a hand of cards

 Definition for computational problem: A well-defined 

computational procedure that takes some value as input 

and produces some value as output
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Some Algorithm Design Techniques

 Greedy

 Divide and Conquer

 Dynamic Programming

 Network Flow

 Mathematical Programming (e.g., linear programming, 

integer linear programming)
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Algorithm Analysis

 There can be many different algorithms to solve the same 

problem.

 Need some way to compare 2 algorithms.

 Usually run time is the most important criterion used

 Space (memory) usage is of less concern now

 However, difficult to compare since algorithms may be 

implemented in different machines, use different 

languages, etc.

 Also, run time is input-dependent. Which input to use?

 Big-O notation is widely used for asymptotic analysis

 Ninf
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Big-O Notation

 Consider run time for the worst input
 upper bound on run time.

 Express run time as a function input size n.

 Interested in the run time for large inputs.

 Therefore, interested in the growth rate.

 Ignore multiplicative constant.

 Ignore lower order terms.

 3n2+6n+2.7 is O(n2).

 n1.1+10000000000n is O(n1.1).

 n1.1 is also O(n2), but to be more precise, it is O(n1.1)
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Growth Rates of Some Functions
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NP-Complete Problems

 The class NP-Complete is the set of problems which we 

believe there is no polynomial time algorithms.

 Therefore, it is a class of hard problems.

 NP-Hard is another class of problems containing the class 

NP-Complete.

 If we know a problem is in NP-Complete or NP-Hard, 

there is no hope to solve it efficiently.
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Algorithm Solution Types

 Polynomial time algorithms

 Exponential time algorithms

 Special case algorithms

 Approximate algorithms

 Heuristic algorithms
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